Portada » Superficie de un circulo

Superficie de un circulo

  • por
Superficie de un circulo

calculadora de la superficie de un círculo

Me gustaría señalar que se trata de un argumento intuitivo, no formal. El punto delicado es que tanto el área como la circunferencia de los polígonos tienden a la del círculo. Para el área esto es bastante fácil de justificar, ya que la vecindad de cualquier punto fuera del círculo finalmente tampoco contribuye al área de los polígonos. Pero para la circunferencia no es obvio, ya que es posible obtener una curva como límite de un conjunto de líneas poligonales mientras las longitudes de éstas no tiendan a la longitud de la curva. El hecho de que no sea así en este caso está relacionado con el hecho de que los lados del polígono tienden todos a ser paralelos al arco de la circunferencia cerca de ella.

circunferencia de un círculo

En geometría, el área encerrada por un círculo de radio r es πr2. La letra griega π representa la relación constante entre la circunferencia de cualquier círculo y su diámetro, que es aproximadamente igual a 3,1416.

Un método para derivar esta fórmula, que tiene su origen en Arquímedes, consiste en considerar el círculo como el límite de una secuencia de polígonos regulares. El área de un polígono regular es la mitad de su perímetro multiplicado por la distancia de su centro a sus lados, y la fórmula correspondiente -que el área es la mitad del perímetro por el radio-, es decir, A = 1/2 × 2πr × r, se cumple en el límite para un círculo.

Aunque en contextos informales se suele hablar del área de un círculo, en sentido estricto el término disco se refiere al interior del círculo, mientras que el círculo se reserva sólo para el límite, que es una curva y no cubre ningún área en sí. Por lo tanto, el área de un disco es la frase más precisa para el área encerrada por un círculo.

Las matemáticas modernas pueden obtener el área mediante los métodos del cálculo integral o de su descendiente más sofisticado, el análisis real. Sin embargo, el área de un disco fue estudiada por los antiguos griegos. Eudoxo de Cnidus, en el siglo V a.C., descubrió que el área de un disco es proporcional a su radio al cuadrado[1]. Arquímedes utilizó las herramientas de la geometría euclidiana para demostrar que el área dentro de un círculo es igual a la de un triángulo rectángulo cuya base tiene la longitud de la circunferencia del círculo y cuya altura es igual al radio del círculo en su libro Medición de un círculo. La circunferencia es 2πr, y el área de un triángulo es la mitad de la base por la altura, lo que da como resultado el área π r2 del disco. Antes de Arquímedes, Hipócrates de Quíos fue el primero en demostrar que el área de un disco es proporcional al cuadrado de su diámetro, como parte de su cuadratura de la luna de Hipócrates,[2] pero no identificó la constante de proporcionalidad.

área del diámetro de un círculo

En geometría, el área encerrada por un círculo de radio r es πr2. La letra griega π representa la relación constante entre la circunferencia de cualquier círculo y su diámetro, que es aproximadamente igual a 3,1416.

Un método para derivar esta fórmula, que tiene su origen en Arquímedes, consiste en considerar el círculo como el límite de una secuencia de polígonos regulares. El área de un polígono regular es la mitad de su perímetro multiplicado por la distancia de su centro a sus lados, y la fórmula correspondiente -que el área es la mitad del perímetro por el radio-, es decir, A = 1/2 × 2πr × r, se cumple en el límite para un círculo.

Aunque en contextos informales se suele hablar del área de un círculo, en sentido estricto el término disco se refiere al interior del círculo, mientras que el círculo se reserva sólo para el límite, que es una curva y no cubre ningún área en sí. Por lo tanto, el área de un disco es la frase más precisa para el área encerrada por un círculo.

Las matemáticas modernas pueden obtener el área mediante los métodos del cálculo integral o de su descendiente más sofisticado, el análisis real. Sin embargo, el área de un disco fue estudiada por los antiguos griegos. Eudoxo de Cnidus, en el siglo V a.C., descubrió que el área de un disco es proporcional a su radio al cuadrado[1]. Arquímedes utilizó las herramientas de la geometría euclidiana para demostrar que el área dentro de un círculo es igual a la de un triángulo rectángulo cuya base tiene la longitud de la circunferencia del círculo y cuya altura es igual al radio del círculo en su libro Medición de un círculo. La circunferencia es 2πr, y el área de un triángulo es la mitad de la base por la altura, lo que da como resultado el área π r2 del disco. Antes de Arquímedes, Hipócrates de Quíos fue el primero en demostrar que el área de un disco es proporcional al cuadrado de su diámetro, como parte de su cuadratura de la luna de Hipócrates,[2] pero no identificó la constante de proporcionalidad.

fórmula de la superficie de un círculo

En geometría, el área encerrada por un círculo de radio r es πr2. La letra griega π representa la relación constante entre la circunferencia de cualquier círculo y su diámetro, que es aproximadamente igual a 3,1416.

Un método para derivar esta fórmula, que tiene su origen en Arquímedes, consiste en considerar el círculo como el límite de una secuencia de polígonos regulares. El área de un polígono regular es la mitad de su perímetro multiplicado por la distancia de su centro a sus lados, y la fórmula correspondiente -que el área es la mitad del perímetro por el radio-, es decir, A = 1/2 × 2πr × r, se cumple en el límite para un círculo.

Aunque en contextos informales se suele hablar del área de un círculo, en sentido estricto el término disco se refiere al interior del círculo, mientras que el círculo se reserva sólo para el límite, que es una curva y no cubre ninguna superficie en sí. Por lo tanto, el área de un disco es la frase más precisa para el área encerrada por un círculo.

Las matemáticas modernas pueden obtener el área mediante los métodos del cálculo integral o de su descendiente más sofisticado, el análisis real. Sin embargo, el área de un disco fue estudiada por los antiguos griegos. Eudoxo de Cnidus, en el siglo V a.C., descubrió que el área de un disco es proporcional a su radio al cuadrado[1]. Arquímedes utilizó las herramientas de la geometría euclidiana para demostrar que el área dentro de un círculo es igual a la de un triángulo rectángulo cuya base tiene la longitud de la circunferencia del círculo y cuya altura es igual al radio del círculo en su libro Medición de un círculo. La circunferencia es 2πr, y el área de un triángulo es la mitad de la base por la altura, lo que da como resultado el área π r2 del disco. Antes de Arquímedes, Hipócrates de Quíos fue el primero en demostrar que el área de un disco es proporcional al cuadrado de su diámetro, como parte de su cuadratura de la luna de Hipócrates,[2] pero no identificó la constante de proporcionalidad.